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Structure

This report is divided into 2 main parts:

e First, one will be titled “Theory” and will contain different chapters to explain all theoretical
aspects of the work, its definitions and a set of consequent steps to be made in order to reach
the goal.

e Second part “Implementation” will contain the information of what we have actually done
during the work on this project.

PART 1 - Theory

Introduction

Project definition

Movement and control of mobile robots in closed workspaces depends on global knowledge of
the environment and exact knowledge of robot position at all times (localization). Odometry,
which is a popular relative localization method, is prone to systemic and non-systemic errors and
therefore, results in the inaccurate estimation of the position of the robot. Consequently,
localization systems that rely on sensing systems like vision cameras, range are gaining
importance in the domain. This project deals with implementing one such system that uses
infrared cameras to capture data of the position of several robots in a pre-defined workspace. This
is an absolute localization for several robots equipped with IR LEDs, using multiple infrared
cameras.

Prior information

The “Wiimote” game controllers (Figure 0.1) contains a vision sensor, which can track the
positions of several IR sources in real time. The hardware part was developed for a multi-robot
localization system based on these sensors.

A prototype of the system can be seen in the project room of building D, which is made of four
IR sensors, allowing covering an area of approximately 2x2 meters (Figure 0.2).

Figure 0.1: “Wiimote”, with the camera
sensor in its original location, attached to a

. Figure 0.2: The relative position of the
logical analyzer

camera




Workspace

In the workspace of the Multi-Robot Localization, system has four cameras mounted on the
ceiling of the project room and they are placed on the 4 corners of a (=<1x1m?). The relative
positions of the four cameras are shown on Figure 0.2. Each camera has a triangular pyramid
detection range. These ranges are not independent; they have overlapping space in which the
robots (LEDs) can be detected by more than one camera at the same time. The base surface of
each camera’s detecting range is a rectangle.

The cameras are placed at different yaw angles (rotation around Z-axes) with respect to the world
frame. Camera frame of the camera 2 is aligned in the same direction as the world frame. The
remaining camera frames are fixed by a rotation of 90 degrees in the counter clock-wise direction
progressively. In this way, the detecting range of four cameras forms a near square workspace of
the robots, on which the LEDs will be placed.

Recall

Previous work is done
There were 2 teams, who already worked on given project:

e Thefirstteam developed the hardware and basic interface to read data from sensors though
CAN-USB protocol. A ROS package /pixart_can_reader was developed to read CAN bus
data, convert the hexadecimal frame data from CAN bus into pixel coordinates.

e Second - made a calibration and localization part using ROS. A new node called
pixart_localization has been created to subscribe to pixart_world and store data as desired.

First Team

To be more consistent, the first team started with a clean field and had nothing more than the idea
of how it should look like. Along with the professor Dominguez Salvador, they have constructed
the hardware of the system: took apart a sensor from the game console, established 4 sensors on
a ceiling, wired them and connected to the microcontroller, is connected to a single CAN bus to
carry all point data.

A single CAN bus is used for data received from the four sensors. Two CAN IDs are assigned to
each camera, that is, 8 IDs per microcontroller box. Each CAN frame holds 8 bytes of data, 4
bytes per detected point. Hence, each CAN frame can hold two points (Figure 0.3):

[ INFO] [1525255426.863506408]: Received frame: 68 # 83 31 02 77 01 b2 02 73
[ INFO] [1525255426.863553038]: Decoded as: Camera 02 from box 00, Point®( 817, 631) and Pointi1( 434,

627)

[ INFO] [1525255426.863657899]: Received frame: 69 # 02 ee 02 32 00 ff 03 ff

[ INFO] [1525255426.863705399]: Decoded as: Camera 02 from box @8, Point2( 758, 562) and Point3( 255,
1023)

Figure 0.3: Detected point data received by CAN bus




CAN bus is interfaced with a PC using a CAN-USB adaptor
(Figure 0.4). This enables live streaming of point data into the
user PC terminal. The same PC holds the ROS network where the
first team had started developing nodes in order to use data in
means of localization.

They created the first ROS node. It publishes the pixart_raw, of
type raw_point, which contains the information about: values of 4

x and y coordinates, camera_id and point_id, as well as a time of Figure 0.4: CAN to USB
detection. All this data is published in a structure defined by | adaptor

raw_point.msg.

After, they made one ROS node per camera, which takes parameters defining the camera_ID,
matrix and pose in the world frame, and subscribes to pixart_raw. Publishes: world_point
messages. This was made in order to receive points projected back from camera frame to the
world frame.

Second Team

This team had made a representation of the system in Rviz (Figure 0.5-0.6). Therefore, we could
actually see “what camera see”: how points are moving with respect to the world frame in
different camera frames.

|
i
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ca mera03 cam« @00
{ }

Figure 0.5: Workspace of the application. Figure 0.6: Top view of the workspace

This team had conducted a theoretical research and implemented two different Calibration
Methods: Homography Matrix Method and Partial Calibration Method. They made a conclusion
based on their results that for our system the Partial Calibration Method is given better results (by
means of giving a smaller reprojection error).



They have built a localization system, which was good, but not robust enough due to imperfection
in the Calibration procedure. In the Appendix part of the report, you can find a brief overview of
the last year reports.

0.1. Objective

In the frame of the given project, we will need to develop a system, which will localize a robot,
which is equipped with an infrared light-emitting diode (IR LEDs) using overhead IR sensors. In
order to do so, 4-IR sensors were used which is mounted on a ceiling of the lab D103.

Pitfalls

As we want our localization to to be a robust system, before starting the process of determining
the pose of the robot, we will need to calibrate cameras. Without it, the determined coordinates
had to be considered with a threshold ([x, y]  [threshold_x, threshold_y]).

Making a robust system

During the calibration of cameras, we will
take into account the lens distortion and the
fact that cameras are placed not perfectly = g =
with respect to each other. ' i

\\/"'61'
ca ra
/’/

/

At the end of the calibrating procedure, we
want that all of our four cameras will give
the same coordinates of the point in the AN
image frames. As now, when testing the —

system, we can clearly see four different | Figure 0.7: The overlapping area between
points next to each other (in the overlapping camera_00 and 01 with detecting the same LED

area, where the cameras’ ranges are meeting together and sharing the field of view) - Figure 0.7.
1) Localization

Localization is a process of determination of some or all variables of the pose (usually only those
necessary to execute a given task). Making it simple, localization is a procedure that will tell us
where our robot is at that point in time. In the frame of our project, our objective will be to localize
the Turtlebot. For this, we can use as many (well, up to 4) LEDs, as we consider as an officiant
amount. Thinking about it we considered that the pattern or 3 LEDs placed in a line in a different
distance — will be sufficient.

The idea is following — the middle LED is constantly switched-on — this LED is giving us [X, Y]
coordinates of the robot. If the robot is moving - it is also possible to compute its 0 value (simply
using the estimation formula, having the current pose and knowing what the position a moment



ago was). However, if the robot is in a hold mode and not moving, the LEDs from aside will be
fleshing. As they are placed on the different distances from the centre — it will be more than
reachable to establish where robot’s front and back sides are and consequently compute 6 value.

o O o

distance distance*2

Figure 1.1: The schematic view of a top of a
Turtlebot, equipped with 3 LEDs

2) Calibration

2.1. Need for calibration
As the calibration method developed by the previous teams does not take into account the fact

that:
e Cameras are not perfectly placed.
e The optical centre of the cameras perfectly in the middle of the image — which is not the
case in real world.

Therefore, after developing the localization part, they were obtaining considerably big errors.
Hence, we need to develop a new calibration procedure for the cameras that should be able to
localize robot accurately. Moreover, make it as flexible to expansion as it can be. for the reason
that if the idea of localizing the robot by means of IR sensors will show itself good — a stand will
grow from 4 to 20 cameras.

2.2. The theory behind the calibration process
Camera calibration is about finding the internal and external parameters of the camera and use

these parameters to correct the lens distortion, measure the size of an object in world units, or
determine the location of the camera in the scene.

Here are some of the factors that will be taken care of, indicating whether this parameter is
considered as intrinsic or extrinsic one:
Intrinsic

We need to find the position of the image centre in the image.
Wait a minute, isn’t the image centre located at (width/2,
height/2)? Well, not really! Unless we calibrate the camera,
the image will usually appear to be off-centre.

Image centre:




Remember how people using DSLR cameras tend to “focus”
on things before capturing the image? This parameter is

Focal length: directly related to the “focus” of the camera and it is very
critical.
This refers to shearing. The image will look like a
Skew factor: g g

parallelogram otherwise!

Lens distortion:

This refers to the pseudo-zoom effect that we see near the
centre of any image.

Extrinsic

Scaling factors:

The scaling factors for row pixels and column pixels might
be different. If we do not take care of this thing, the image
will look stretched (either horizontally or vertically).

Camera calibration matrix transforms a 3D point in the real world to a 2D point on the image
plane (Figure 2.1), considering all the things like focal length of the camera, distortion, resolution,
shifting of origin, etc. This matrix consists of parameters that are intrinsic as well as extrinsic to

the camera and can be seen in Figure 2.2.

LY P
u
P(X,Y,Z) zelv| =K[R T] Yu
’ Zay
1
P, (u,v) 1 ]
S [2D] = Intrinsic [Extrinsic] [3D]
Qé—cntcr of | WV | Principal Axis .Z
’ / Projection Image Plane’
X
Figure 2.1: Image formation parameterized Figure 2.2: Equation of transition from
scheme world frame (3D) to image frame (2D)




In addition, it means that if we will find those Ll

matrices, that contains the intrinsic parameters, as

well the translation vectors (<&-ksi) between cam_o00 /\
camera_00 and all other cameras in a system (Figure
2.3) - we can do a reverse procedure and retrieve a
3D pose, knowing the corresponding point in the

cam_o02

image frame. It is interesting that in this case, we
cam_oO
don’t need to know all 12 vectors, 3 is more than B X =
(S1_ 01
enough. -
Figure 2.3: Schematic representation
For example: of a related translation vectors, needed

for a pose estimation

If the point was detected in between camera_02 and
camer_03 we need to know the relations between them in order to obtain the right value. In this
case, we will us a ksi-vector between camera_00 and camera_02, and inverse ksi-vector between
camera_00 and camera_01. Multiplying them we will get a relation between camera_02 and
camera_03.

2.3. Calibration Algorithm for our system

Definition of a camera calibrating procedure
Calibration is defined as an optimization problem, the aim of which is to reduce the distance
between desired pixel coordinates of the interesting point and the obtained coordinates.

Number of measurements to be made

By saying “measurement” we mean: how many valid data sets do we need to have in our data
file. Data set can be named valid if at least one camera will record all 4 points from the calibrating
board.

We can write an equation to express the number of unknown and known parameters.

Prior knowledge
From each data set, we will receive 8 values (4 points with both x and y coordinate).

Unknown variables

From each measurement, the extrinsic parameters have to be recalculated, as the relative
position of the board with respect to the camera frame will change. Nevertheless, the intrinsic
parameters are something that will not change with measurements. Once defined— they will
be settled.

Equation
6N +6 <8N — N >3, where N is an unknown number of measurements.



It means that for each camera we need to have at least three valid data sets, for the algorithm to
work. However, to make it robust this number should be at least 3 times greater. Which means,
that we will make around 10-15 measurements for each camera.

Algorithm for calibrating process
The method is similar to the stereo calibration using a chessboard pattern and Open Source
Computer Vision (Open CV) Library.

1. Declare all necessary vectors to store the image points and the object points.
2. Read the input file, where the alleged transformation vectors between camera_00 and all
other cameras are defined as well as the initial intrinsic parameters.

e To find the right transformation vectors we had firstly to measure a distance than to define
a rotation around x, y and z coordinate.
& = [transl_x, transl_y, transl_z, roll, pitch, yaw]

e This is a so-called initial guess. We do not put the exact value (for instance, the rotation
angle around z can be 92.54°), but this value is important, as the wrong definition of it
will lead in finding the local minimum of the optimization function, instead of searching
— global.

3. To use a function, that estimates the object pose given a set of object points, their
corresponding image projections, as well as the camera matrix and the distortion coefficients.

4. Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection
error, that is, the total sum of squared distances between the observed feature points
imagePoints and the projected (using the current estimates for camera parameters and the
poses) object points objectPoints.

The function computes Jacobians - matrices of partial derivatives of image points coordinates (as
functions of all the input parameters) with respect to the particular parameters, intrinsic and/or
extrinsic. The Jacobians are used during the global optimization

3) Calibration board selection

Why can’t we use chessboards?

Because our system will simply not see it. In order to make the calibration of a system, we have
constructed a new calibration board that was mounted on a top frame of a Turtlebot. It was a good
move, as this localization system was targeting on Turtlebots — the heights from the ground was
considered to be as 0.45 m. Therefore, we will calibrate a system for this type of robot, using this
robot.



Alternate calibration board

In order to retrieve points from the chessboards we need to run a function, which reads an image,
process it to detect edges and then corners, after which it is giving us the found coordinates. In
our case, there is no need in this step, as the only thing we are going to receive is the coordinate
of a LED placed on a corner which reduces the computation cost.

Storage of datasets

In our case, we will need to read and store the data received from cameras separately, as then use
it as an input to a calibration program. We have decided, to have a final storage in a dictionary-
structured .json file.

JSON - JavaScript Object Notation is a way to store information in an organized, easy-to-access
manner. In a nutshell, it gives us a human-readable collection of data that we can access in a really
logical manner. With it, data can be load into file quickly and asynchronously.

4) Strategies
4.1. First strategy
After reading the previous reports and all necessary documentation about calibration, we have
contacted Mr Bogdan Khomutenko, as he is one of the specialist in ECN for Camera Calibration.
Following his advises, we had formulated the next steps to be done:

1) Modify the already existing board, so it would
have constantly switched-on pins in the
pattern, which you can see in Figure 4.1.

2) Create a file which will make it easier to
communicate with the CAN-USB reader.

3) Create a ROS node to collect the data required
for calibration.

4) Make a program to store needed data points in o
pre-defined structure, using JavaScript Object .
Notation (JSON): Flgure _4.1: Pattern for the future

) i calibration board v2.0

5) Use received data to calibrate cameras and

compute the errors.

The idea was trivial enough in implementation: having a new calibration board with known
parameters and a program, which stores points in a form presented on Figure 4.2, we could follow
the same procedure as with normal cameras and a chessboard calibration board.



Serial Cam00 Camo01 Cam02 CamO03
Number
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1, y1|x2,y2 (%3, y3 (x4, y4 |x1, y1 (x2, y2 |x3,y3 (x4, y4 |x1, y1 |x2, y2 (x3, v3 |x4, y4|x1, y1 (x2, y2 |x3, y3 (x4, y4

s [ s

Figure 4.2: Structure of a form needed for storing 4 points from each camera

Finding the camera parameters include intrinsic, extrinsic, and distortion coefficient. To estimate
the camera parameters, we need to have 3-D world points and their corresponding 2-D image
points. You can get these correspondences using multiple images of a known calibration pattern,
such as a board with known distances between each LED.

4.2. Problems we faced
We started our work by marking a floor, so it would be easier to test a floor knowing when the

point is out of a camera’s view range. Doing that we have noticed that camer 03 is not giving any
values along OY axes. We went through all existing code and came to conclusion, that the
problem must be in a hardware of the sensor as such, and the problem is not in CAN reader or
wires. In a few weeks after this unfortunate lost we, we have camera_02 went out of order. It has
just shown any values, giving no signal to us.

After changing the board and making a new program for storing the needed data we have found
a glitch, which disabled our entire plan in making a calibration with a method defined above. The
problem was that after bringing the board under the cameras and making translation-rotation of
it: all points shifted chaotically in a camera frames. It means, that they were “jumping” all around
(Figure 4.3) for no obvious reason for that. We believe that the problem is laying in a hardware
of the sensors themselves. We have tested the behaviour of the system on a board with 3 and 2
points but the problem didn’t disappear.

cam.radl | ,cam\e\. 4102
| \ [

\
\
y

Figure 4.3: Jumping of LED positions




4.3. Second and final strategy

We had decided to mount 4 LEDs on a back
of the Turtlebot, those LEDs will be switched
ON/OFF in a given sequence: that’s how we
could still leave a possibility to match a 3D
point on a board and a 2D point on the image
and have only one point turned on at a time.
Otherwise, working with one single LED
would lead to the errors greater than the one
presented by a previous team. The new
outlook of the board can be seen in Figure
4.4,

4 RADIATIO
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Figure 4.4: final calibration board imbedded
on the planar back of the Turtlebot




PART 2 - Implementation
5) Calibration board

5.1. Description of the Board

Geometry
LEDs are placed in the corners of a perfect rectangle, with a longer and shorter side to be equal
to 0.262 and 0.12 respectively (dimensions are given in meters).

IR LED
Note: Small view angle of the LED made the tilting of calibration board more difficult but since
the proper LEDs were not available to us, we proceeded to calibrate our system using these:

Lens type Blue transparent
Spectral wavelength 940nm
Spectral bandwidth 50nm
Radiant intensity 8mW/sr
Forward current 50mA
Forward voltage typ. | 1.2V
Forward voltage max. | 1.6V /
Power dissipation 80mw Figure 5.1: photo of the described LED
View angle 340 mounted on a battery, in order to test a work
of a system
Power Supply

The LEDs and Arduino are powered using the onboard 12 Volts, 1.5-Amps power supply of turtle
bot.

The frequency of LEDs’ blinking
We have implemented a small program on Arduino microcontroller, which will sequentially
switch ON-OFF LEDs with a cycle time = 100 milliseconds, on the press of toggle switch.

5.2. Embedding

Our calibration board was mounted on a top frame of a Turtlebot (Figure 5.2) in order to automate
the process of calibration. It is a tedious task to walk around the arena carrying the calibration
board to collect datasets so we came up with an idea of placing the calibration board on top of
Turtlebot and making it go around collecting data. This will be helpful when the camera array
expands to a larger size in the future.



In addition, this localization system was targeting on Turtlebots whose heights from the ground
were considered to be as 0.45 m. Therefore, we will calibrate a system for this type of robot using
this robot.

Figure 5.2:The image of the “Kabuki” ) e
Turtlebot Figure 5.3: Circuit diagram

5.3 Electronics

Board was made using the Arduino microprocessor. LEDs were connected in the sequence
depicted on Figure 5.3. There will be 4 LEDs — 4 corners. Each of the LED will be turned ON by
a switcher for 200 milliseconds and then OFF for the same amount of time.

We have tested a system when the ON time was 200 milliseconds and OFF time was 100, but we
have received a few a data points from sensors as if they were flashed at the same time. That is
why we have decided to increase the time twice.

while (pressed)

delay(200);

for (int i = 8; i < 12; i++)

{
digitalWrite(i, HIGH);
delay(100);
digitalWrite(i, LOW);
delay(100);

}

digitalWrite(13, HIGH);

pressed = LOW;

}

Code 5.1: A snippet of code from calibration.ino file




6) Configuration File

6.1. Old method to run the process
Last year, there were defined the steps to be followed in order to correctly connect the localization

system to the user PC, which was:
1. This package is found to work seamlessly on Ubuntu equipped with ROS Indigo.

Download and install can-utils software in Ubuntu environment.

Plug in the power supply cable into mains (large white adaptor).

Connect the CAN-USB adaptor into one of the USB ports of the user PC.

Enter can-utils folder and type: ./configure

Type the following command to check the sl-device that is assigned to the user PC: Is

/dev/ttyACM*. This should return one of the values: ttyACMO or ttyACM1.

7. Depending on the index in the previous step, type this command: ./slcan0_up.sh or
Jslcanl_up.sh. This should give a message that the slcan0 or 1 is attached.

8. One can now stream the CAN bus data into the terminal by typing: candump slcan0O (or
slcanl as applicable).

9. In a separate terminal, enter the src folder of the catkin workspace where the package is
to be unzipped: pixart

10. This package has its own launch folder and corresponding launch file that can be launched.

ok wn

We found repeating these actions everyday time-consuming. Consequently, with a great help of
Dominguez Salvador and professor Gaetan Garcia, we have created a file init.sh in order to make
the sl-device that is assigned to the user PC, have one and only “0” index.

6.2. A new method to run the process
It is accessing the can-utils folder and with all necessary permission changes, it uses a file which

blocks the receiving of a “1” index, always enabling the “0” one.
Then, it is going into the /catkin_ws directory. Where it:

o Compiles all existing packages;
o Adding environment variables to your path to allow ros to function;
o Launches a pixart package.

Below, in a Code 6.1, you can find a full script within the init.sh file:

#! /bin/bash

# this file we use to read data from CAN-USB reader
chmod a+x init.sh

chmod a+x slcan@_up.sh

chmod a+x slcand

chmod +x ./slcan_attach

cd /home/ragesh/catkin_ws/src/pixart/src/can-utils
bash -c './configure'

1s /dev/ttyACMo

bash -c¢ 'sh ./slcan@ _up.sh'

(W)
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10. # this file we use to build and set the environment
11. cd ..

12. cd ..

13. cd ..

14. cd ..

15. bash -c 'catkin_make'

16. bash -c 'source devel/setup.bash’

17. bash -c 'roslaunch pixart pixart.launch'

Code 6.1: code of init.sh used to read a data from CAN-USB and setting the environment

6.3. Steps to be followed
This package is found to work seamlessly on Ubuntu equipped with ROS Kinetic.

Download and install can-utils software in Ubuntu environment.
Plug in the power supply cable into mains (large white adaptor).
Connect the CAN-USB adaptor into one of the USB ports of the user PC.
Unzip an archive with all provided code into the desired folder
Before the first run: in the root of catkin_ws folder there will be a file called init.sh. Open
it and modify a path to the to the ./configure file:
e line 8: in between cd ----------=--=---- [catkin_wsl/.. .
7. Type in a command line ./init.sh to execute a file (you do it after you are already in
catkin_ws folder)

ok wdEe

6.4. Conclusion
There is always a way to make your life easier and not to do all over again the same actions which

can be done automatically.

7) Data Storage

7.1. Preconditions

After running the program, it can be seen that the output is being printed in a line and not very
easy in being read. We decided to make a separate program, which will extract the data in a list
form defined by a raw_point.msg. Consequently, import it into a given file.

Python vs C++

There are the numpy and matplotlib libraries that give a solid foundation for all numerical,
statistical, matrix computations and graphical representations, similar to what Matlab offer. There
is just NO comparable library of this kind and scale in C/C++. Since we were working more on
datasets and storage, we decided to proceed with python which made the programming faster,
easier and more maintainable.



JSON

JSON - JavaScript Object Notation is a way to store information in an organized, easy-to-access
manner. In a nutshell, it gives us a human-readable collection of data that we can access in a really
logical manner. With it, data can be load into file quickly and asynchronously.

7.2. Development of ROS node

A new ROS node Calibration_data was developed using python which stores the incoming raw
data into JSON file. This node subscribes from pixart_can_reader which published the raw data
as pixart_raw from the IR cameras through the USB-CAN controller. This stored data is later
used for data processing for the calibration of the IR cameras

/point_stream03

/camera_outline03

/pixart_camera03

/pixart_can_reader /pixart_raw

C /Calibration_data

y | p—
/camera_outline02
/point_stream02

Figure 7.2: ROS node for data storage

‘time_ms’,
‘time_ns’

]

Code 7.1: Structure of raw data stored in the json




7.3. The algorithm for data processing
1. Single point data structure.
Storing the raw data in separate files for each camera.
Filter files by taking the average value for all points.
Grouping of filtered points into a single file based on the time stamp and camera_id

o

1. The defined structure for a single point detected in a camera frame is as follows:

{ 'x":data.x, 'y":data.y, ‘cameralD":data.camera_id,
‘time ms'.data.stamp.secs, 'time ns':data.stamp.nsecs}

Code 7.2: A snippet of code from raw_data_store.py to define a structure inherited by
receiving a raw_point subscribed message

Essentially, we just built a structure for carrying an information, received from raw_data into
a JSON file format.

2. In order to begin the procedure of camera calibration, as such, we need to distinguish points
that are seen in different camera frames — save the data into 4 separate files, filtering by
averaging the datasets to remove the error which may occur when capturing the calibration
board.

3. We need to make a test to know which dataset belong to which point, and which one is the
completely different point (as for one blinking LED we will not receive one and only
measurement in a camera, it’s going to be a continuing flow of points).

To do so, we are checking if next point is close enough for being considered as the same point
as the previous or not (within a threshold to take into account oscillation of a calibration board).
In our case the flashing of LED takes 800 milliseconds so we took a tolerance of 2 seconds. If
it is being the same, we add it is parameters to the instance called “accumulator” and
incrementing the “counter”. After a data set for the point was checked, we will divide
accumulator with the counter value, which gives the average for each point.

1.n = len(data_points)
2. for i in range(1,n):
3. cur = itemgetter('x', 'y')(data_points[i])
cur_time = itemgetter('time ms','time ns')(data_points[i])
diff = np.abs(tuple(map(sub, prev, cur)))
res = np.any(diff <= tol_pix)
if (res):
acc = tuple(map(add, cur, acc))
count = count + 1.
10. prev = cur
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11. else:

12. filtered_time.append(save_time)

13. save_data = [x / count for x in acc]

14. save_time = cur_time

15. prev = cur

16. acc = cur

17. count = 1

18. filtered _data.append(save_data)

Code 7.3: asnippet of code from raw_data_store.py to filter an average the value of the
same coordinates

4. After distinguishing our points in each file, we are creating a new file; where we will group
those data into different data sets in depend on camera that received the points.

In addition, we have to make a function, which shows how many cameras have seen points at
the same time (we consider only those sets where one camera see all 4 points, leaving behind
those, which have a lack of it) — it means distinguish data from overlapping zone.

1. for 1 in data:

2 pt = [i[2], i[3]]

3 cur_time = i[0] #sec

4 time_diff = np.abs(cur_time - prev_time)
5. if count ==

6 time_points = [cur_time, temp]
7 points.append(time_points)

8 count = @

9. temp = []

10.

11. if(time diff < tol):

12. count = count + 1

13.

14. else:

15. temp = []

16. count = 1

17. temp.append(pt)

18. prev_time = cur_time

19. return points

Code 7.4: The snippet of code from merged data.py to save a data only from those
measurements, which have all 4 points




After grouping and merging the data in a predefined pattern, we have created a dictionary in
order to be able to use this file as an input to the calibration function. In case, if we will get a
measurement from an overlapping between to cameras.

[
[{"Cam_id": "came@",
"points":[
[ x1,y1],
[ x2,y2],
[ x3,y3],
[ x4,y4] ]
}
1,
[
{"Cam_id": "caml",
"points":[
[ x1,y1],
[ x2,y2],
[ x3,y3],
) [ x4,y4] ]

]
]

Dictionary 7.1: The structure defined for importing data into Merged_file.json, where x and
y are numerical value for the corresponding point coordinates

100

100 200 400 500 600 700 800 ° 100 200 300 400 500 601 00 800

Figure 7.2: plots of the measurements made in camera_00 and camera_01 frames

In the same file Merged_file.json, we have printed the collected data, which can be seen in Figure
7.1, where each rectangle represents one measurement of a calibration board.



NOTE: in our program, we merged only data from camera_00 and camera_01 as during our work
cameras_02 & 03 went out of order, which made it impossible to collect needed data.

Conclusion

For the tasks defined in this chapter, we have created next scripts:

raw_data_store.py | — program wrote in Python, created in order to subscribe for /pixart_raw
(published by pixart_can_reader topic), to average values received for a
single point and to store those values in a defined structure in 4 separate
Json files (each for every camera);
merge_data.py — program for combining those 4 files, created after using the previous
script, in order to give it the right dictionary-structure and consider only
those data-sets, which has all 4 points from the calibration board.

8) Calibration procedure

In order to implement this procedure, the software developed by Bogdan Khomutenko was
modified and embedded into the main system. The most difficult part was to adapt our data, so
this software will accept our system.

In the case of stereo calibration, we will use two datasets — it combines one monocular calibration
dataset and one stereo calibration dataset.

8.1. Declaration of Transformations
In this case, we have two transformations: in between camera and board as well as between

available cameras.

"transformations"” : [
{
"name" : "xiCamBoard",
"global" : false,
"constant" : false,
"prior" : false
¥
{
"name" : "xil2",
"global" : true,
"constant" : false,
"prior" : true,
"value" : [1, ©, 0, ©, 0, 1.57]
}l
Code 8.1: a snippet of data from calib_ir.json, used as an input file to the calibration program




e xiCamBoard is used in monocular calibration subproblem. It is used exactly in the same
manner as in monocular calibration.

e Xil2 is the same for all the stereo images and defines the transformation between the two
cameras. It is global and has a prior.

8.2. Transformation Prior Format

The following formats are supported to define a transformation:

e 3values [X, Yy, theta] 2D posture. z-coordinate, x- and y-rotation are 0
full 3D parametrized by translation and rotation
vectors (see Rodriguez' rotation formula)

3D parametrized by a translation vector and a
normalized quaternion

homogeneous transformation matrix, stored row-

e Gvalues[x,VY,z rx,ry,rz]

e 7values[x,y,z, gx, qy, qz, qw]

wise:
e 12values [rl1,rl12,rl3,t1, r21, [ r11 r12 r13 tl1]
r22,r23, 12, r31, r32, r33, t3] [ r21 r22 r23 12 ]

[ r31 r32 r33 1t3]
[ O 0 0 1]

8.3. Declaration of Cameras

In the case of stereo calibration, we'll have two cameras.

"cameras": [
{
"name" : "camo",
"type" : "eucm",
"constant" : false,
"value" : [@.01, 1, 1175, 1175, 512, 384]
s
{
"name" : "caml",
"type" : "eucm",
"constant" : false,
"value" : [0.01, 1, 1175, 1175, 512, 384]
}
Code 8.2: a snippet of data from calib_ir.json, used as an input file to the calibration program

8.4. Data Definition

"transform_chain" : [
{"name" : "xiCamBoard", "direct" : true}

Code 8.3: a snippet of data from calib_ir.json, used as an input file to the calibration program




e transform_chain - describes the sequence of transformations between the camera and the
calibration board.
The transformations are combined in the same order before being applied to the points of the
calibration board.

"points" : [[@, ©.12, @], [0, @, 0], [0.262, @, 0], [0.262, 0.12, ©]],
" points" : [[@, @, @], [0.262, @, @], [0.262, ©.12, 0], [0, 0.12, 0]]

Code 8.3: a snippet of data from calib_ir.json, used as an input file to the calibration program,
where “points” represents the X coordinate and “ points” -y

We make a double set of values inside of “data” structure, as both camera_00 and camera_01 will
see the same calibration board and are of the same type.

9) Results

We tested the calibration software with a set of 12 data sets for camera_00 and camera_01. The
stereo calibration was done using a set of 3 data sets. We obtained the following results for the
datasets we used.
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Figure 9.1: Calibration board detected by camera_00 and 01 for calibration

Found intrinsic parameters are:

cam@ : © 0.36035 1203.23 1204.24 526.616 389.011
caml : 0.108349 1.60597 1220.57 1216.91 522.642 393.629




Changing the files, defined inside of the calib folder, we have inserted new values instead of the
one used by the previous team. As we can see on the Rviz, now points almost completely coincide,
especially if to compare with the plots presented in Figure 0.7.

Global extrinsic parameters will be used by future groups in order to make a localization system
more robust:

| xil2 : 0.997239 -0.00124434 -0.0429873 0.0130096 0©.0136953 1.50725 |

Figure 9.2: The overlapping area between camera_00 and 01
with detecting the same LED with the new intrinsic parameters

10)Conclusion

The idea of using IR-sensors to localize a Robot is very good: we do not need to waste operational
time and use a big data server to store images (as in the case with a localization using usual
cameras). It could work if the hardware was developed specifically for these purposes.

Instead, working on equipment developed as a game console — we found it very challenging and
not sufficient enough in case of multiple robot localization in a one camera frame. As it was
explained in an introduction part, it is possible for one camera to see multiple points (up to 4), but
it cannot be sufficiently localized because of its unpredictable behaviour.

10.1. Future work

In our opinion, there are too many issues with a hardware to rely on the results obtained during
the data processing. A robust hardware system is necessary for the better performance of the



localization system. Hence, there is no point to continue developing software without solving the
main obstacles in the hardware:

1) To find a reason for not receiving data from the camera02 and camera03.

2) To solve an issue with “jumping” points in case of their multiple appearances in any of
camera frames.

3) Expand the camera array to more cameras for large area coverage.

10.2. Technical difficulties and Solutions

1. Unavailability of required IR LEDs for making calibration board delayed the calibration
process. However, a new calibration board was made using the LEDs from the previous
calibration board.

2. False detection of points when the workspace is illuminated by direct sunlight which can be
avoided by using blinds or curtains for the windows in the project room.

3. Malfunctioning of cameras as we approached the deadline. We had decided to proceed with
just two cameras at the end for calibration but the programs we developed can process the
data for 4 cameras.

4. Calibration board was bulky and also requires an adaptor for power supply from mains which
made the calibration procedure tedious. A new calibration board was made on the top of turtle
bot which helped in the automation of calibration procedure.



11)  Appendix

In this section, we will do a brief overview of the work done by other groups, mainly the
information, that we had found useful during our work. In order to do so, we will have to omit a
lot of details, so it’s highly recommended for the future teams to go through all the reports before
continuing working on a project.

11.1. Overview of work done by Henri Chain and Ghislain Rabin in March 2016

Bit uintl6 x
E Byte 7 6 5 4 3 2 1 @ uintl6é y
8 o X1¢7:0> uintl6 camera_id
41° i 1 TS uint8 point_id
2 ¥1<9:8> X1<9:8> Y2<9:8> X2<9:8> time Stamp
I | f i 3 X2¢7:0>
2.5 m 1.395m s vazior
Figure 11.1: Sensor FOV Figure 11.2: data Figure 11.3: Data defined
and ground viewable area. arrangement in basic mode. in the raw_point.msg.

One sensor provides:

e The location of four dots;

e Resolution: 10 bit (1024x768);
e Sample rate: =270 Hz;

e Field of view: 41°.

Communication protocol:

e CAN - between cameras;

e USB — between computer and cameras.
= CAN-USB adaptor @, - -

Figure 11.4: 4 cameras and

h h h . des: electronic interface mounted on the
The cameras have three operating modes: ceiling of the project room

e Dasic (location of four points);
e extended (four points with dot sizes);
e complete (four points with bounding boxes and intensity).

For the purpose of localization and calibration, we work with the basic mode - provides location
data up to four points (Figure 11.2) - this application works under the constraint that each
camera can detect only up to four under it.




The initial ROS node reads the CAN bus using the Linux Socket CAN API. It publishes data

defined in a raw_point.msg and can be seen in Figure 11.3:

e camera_id is a unique identifier for each camera, combining the box ID and camera ID within
the box;

e point_id is the ID of the point within the camera (0, 1, 2, 3).

11.2. Overview on a report made by Haorui Peng, Leonardo Stretti and Anusha
Srihari Arva in June 2016

11.2.1 Determination of Viewing Range and Overlap

Camera ranges:

e Have a triangular pyramid detection;

e Are not independent - have overlapping space in which the robots (LEDs) can be detected by
more than one camera at the same time.

Camera frames:

e The camera_02 is aligned in the same direction as the world frame;

e The remaining camera frames are fixed by a rotation of 90 degrees in the counter clock-wise
direction progressively.
—> The detecting range of four cameras forms a near square workspace of the robots, on which
the LEDs will be placed.

I IMPORTANT: The size of the detecting spaces is different at different heights. The higher the
robot, the smaller is the detecting space. If the robot is too high, the workspace might not be a
square any more. The detecting range of each camera will not be overlap, which will result in
some spaces between the cameras where the LEDs cannot be detected.

IZ.Scm 25en
27cm
52.5cm
28cm

2.5cm
L O e
Figure 11.5: Calibration board | Figure 11.6: Dimensions of the

calibration board




11.2.2. Determination of Nature of Calibration
Special “chess-board” like the pattern of LEDs was constructed shown in Figure 11.5. Its

pattern contains nine LEDs on the corner of 2*2 squares with an edge length of 25cm. To be
extremely accurate with measurements, the exact positions of the LEDs were calculated as
shown in Figure 11.6.

11.2.3. Homography Matrix Method
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Figure 11.7: Equation for
Homography method.

In the equation presented in Figure 11.7:

= sisthe homogenous factor of the pixel coordinates

= H is the homography matrix, in other words, the transformation matrix from the world plane
to the pixel plane.

The output from the method: the errors are huge with this method, especially when the camera
frame and the world frame are not in the same orientation.

The main reason for the huge error is the measurements of the world coordinates. Even though
we used a board to define the world coordinates, the board is placed 45cm high upon the ground,
there is no direct reference for the measurements of the world coordinates, and it will bring large
error when we define the world coordinates.

11.2.4. Partial Calibration Method

X X
i Y Y
K [Ia 03][}?3)3 I3x1] 7 =P 7
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Figure 11.8: Equation for
Partial Calibration method.




In the equation presented on Figure 11.5, matrix K is the intrinsic matrix containing 5 parameters:

= Focal lengths - fu, fv;
= Center of image plane - uo,vo ;
= Axis skew fuv of the camera.

Matrix R and vector t: form the extrinsic matrix of the camera depicting rotation and translation
of camera with respect to the world frame.

It can be then assumed that the cameras are ideal and placed well - thus fixing the centre of the
image frame at (512, 384).

—>Relatively small errors compared with that of holography method.

11.2.5. Study of the Existing Software Package

For the current arrangement, Camera IDs range from 0 to 3 and are expected to go up to 15 when
the whole array of cameras is assembled. Point_IDs range from 0 to 3 for each camera.

/point_streamO03

/camera_outline03

/pixart_camera03

/point_streamO1

/camera_outline01

/point_streamO00

/pixart_camera00

/pixart_camera02

/Calibration_data

/camera_outline00

/camera_outline02

/point_streamo02

Figure 11.9: RQT graph for ros-pixart-master package




a. /pixart_can_reader

Reading the frame data coming from CAN bus which a hexadecimal value which contains:

- Camera ID
- BoxID

- Coordinates of the point in camera frame.

One message is published per detected point.

Publishes to: /pixart_raw

geometry_msgs/PointStamped pt
std_msgs/Header header
uint32 seq

time stamp

string frame_id

geometry _msgs/Point position
float64 x

float64 y

float64 z

uint16 camera_id

uint8 point_id

Figure 11.10: Message fields of
/world_point

unit32 seq
time stamp
string framd_id

float64 x
float64 y
float64 z

std_msgs/Header header

geometry msgs/Point position

Figure 11.11: Message fields of
/point_streamOx

b. /pixart_camera00 - /pixart_camera03
Reading pixel coordinates published in /pixart_raw and project the same into world coordinates
while creating visualization for the movement of LEDs.
The project function uses the camera matrix which is determined by the calibration of the cameras
to identify the corresponding coordinates in world frame.

Node name Subscribes to

Publishes to

Data published

/pixart_camera00
/pixart_camera0l
/pixart_camera02
/pixart_camera03

/pixart_raw

/pixart_world

Position data of all
LEDs from all cameras

/camera_outline (00-03)

Data of the workspace
and frames for rviz

/point_stream(00-03)

Position data of points
under individual
cameras for rviz




11.3. Quick overview of the updated structure

For the Figure 7.9 we have made a new rgt-graph, where you can see a new additional subscriber
to the /pixart_raw - /Calibration_data.

This subscription is needed in order to obtain result described in a Chapter 3 — Subparagraph 3.2
of this report (JSON data storage - Algorithm of data processing).

1)

2)

3)

4)

12)References

Camera calibration - Theory:

http://ksimek.github.io/2012/08/22/extrinsic/

http://ksimek.qgithub.io/2013/08/13/intrinsic/

Good theoretical sites, with a nice interactive part to see how the change in different extrinsic-
intrinsic parameters can influence the image you get at the output.

Calibration software, developed by Bogdan Khomutenko:
https://github.com/BKhomutenko/visgeom

OpenCV site with documentation on a calibration method explained in the Chapter 4 of this
report:

https://docs.opencv.org/3.0-beta/modules/calib3d

In the report of the first team it was mentioned the usage of a LED array and some reflective
tape, you can use the infrared camera in the Wii remote to track objects. Here is a good link:
http://johnnylee.net/projects/wii/

Tips for the future team:

Even though there was embedded a new file to block appearance of a “0” index of a CAN-
USB reader, sometimes you can steal try to run the init.sh file and receive an error, finding
out that somehow you do have a “1” index. In this case you will need to reboot your computer
and re-run it.

In contrast to the last year works, this year we were working on ROS-Kinetic instead of ROS-
Indigo —except for the few new changes in a work with a command line (catkin build vs
catkin_make) we did not find any big difference.

If you will have any additional questions you can try to contact us via email or Facebook.
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